Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Nat Commun ; 15(1): 3486, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664428

RESUMO

Van der Waals (vdW) assembly of low-dimensional materials has proven the capability of creating structures with on-demand properties. It is predicted that the vdW encapsulation can induce a local high-pressure of a few GPa, which will strongly modify the structure and property of trapped materials. Here, we report on the structural collapse of carbon nanotubes (CNTs) induced by the vdW encapsulation. By simply covering CNTs with a hexagonal boron nitride flake, most of the CNTs (≈77%) convert from a tubular structure to a collapsed flat structure. Regardless of their original diameters, all the collapsed CNTs exhibit a uniform height of ≈0.7 nm, which is roughly the thickness of bilayer graphene. Such structural collapse is further confirmed by Raman spectroscopy, which shows a prominent broadening and blue shift in the Raman G-peak. The vdW encapsulation-induced collapse of CNTs is fully captured by molecular dynamics simulations of the local vdW pressure. Further near-field optical characterization reveals a metal-semiconductor transition in accompany with the CNT structural collapse. Our study provides not only a convenient approach to generate local high-pressure for fundamental research, but also a collapsed-CNT semiconductor for nanoelectronic applications.

2.
Regen Biomater ; 11: rbae028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605852

RESUMO

Peri-implant lesion is a grave condition afflicting numerous indi-viduals with dental implants. It results from persistent periodontal bacteria accumulation causing inflammation around the implant site, which can primarily lead to implant loosening and ultimately the implant loss. Early-stage peri-implant lesions exhibit symptoms akin to gum disease, including swelling, redness and bleeding of the gums surrounding the implant. These signs indicate infection and inflammation of the peri-implant tissues, which may result in bone loss and implant failure. To address this problem, a thermionic strategy was applied by designing a cuprorivaite-hardystonite bioceramic/alginate composite hydrogel with photothermal and Cu/Zn/Si multiple ions releasing property. This innovative approach creates a thermionic effect by the release of bioactive ions (Cu2+ and Zn2+ and SiO32-) from the composite hydrogel and the mild heat environment though the photothermal effect of the composite hydrogel induced by near-infrared light irradiation. The most distinctive advantage of this thermionic effect is to substantially eliminate periodontal pathogenic bacteria and inhibit inflammation, while simultaneously enhance peri-implant osseointegration. This unique attribute renders the use of this composite hydrogel highly effective in significantly improving the survival rate of implants after intervention in peri-implant lesions, which is a clinical challenge in periodontics. This study reveals application potential of a new biomaterial-based approach for peri-implant lesion, as it not only eliminates the infection and inflammation, but also enhances the osteointegration of the dental implant, which provides theoretical insights and practical guidance to prevent and manage early-stage peri-implant lesion using bioactive functional materials.

3.
J Med Chem ; 67(8): 6749-6768, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38572607

RESUMO

Cardiovascular diseases (CVDs) persist as the predominant cause of mortality, urging the exploration of innovative pharmaceuticals. Mitochondrial dysfunction stands as a pivotal contributor to CVDs development. Sirtuin 3 (SIRT3), a prominent mitochondrial deacetylase known for its crucial role in protecting mitochondria against damage and dysfunction, has emerged as a promising therapeutic target for CVDs treatment. Utilizing isosteviol, a natural ent-beyerene diterpenoid, 24 derivatives were synthesized and evaluated in vivo using a zebrafish model, establishing a deduced structure-activity relationship. Among these, derivative 5v exhibited significant efficacy in doxorubicin-induced cardiomyopathy in zebrafish and murine models. Subsequent investigations revealed that 5v selectively elevated SIRT3 expression, leading to the upregulation of SOD2 and OPA1 expression, effectively preventing mitochondrial dysfunction, mitigating oxidative stress, and preserving cardiomyocyte viability. As a novel structural class of SIRT3 activators with robust therapeutic effects, 5v emerges as a promising candidate for further drug development.


Assuntos
Cardiotônicos , Diterpenos do Tipo Caurano , Desenho de Fármacos , Sirtuína 3 , Peixe-Zebra , Animais , Sirtuína 3/metabolismo , Sirtuína 3/antagonistas & inibidores , Diterpenos do Tipo Caurano/farmacologia , Diterpenos do Tipo Caurano/síntese química , Diterpenos do Tipo Caurano/química , Diterpenos do Tipo Caurano/uso terapêutico , Cardiotônicos/farmacologia , Cardiotônicos/síntese química , Cardiotônicos/química , Cardiotônicos/uso terapêutico , Relação Estrutura-Atividade , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Doxorrubicina/farmacologia
4.
Adv Mater ; : e2401284, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38574258

RESUMO

The development of solid-state electrolytes (SSEs) with outstanding comprehensive performance is currently a critical challenge for achieving high energy density and safer solid-state batteries (SSBs). In this study, a strategy of nano-confined in situ solidification is proposed to create a novel category of molten guest-mediated metal-organic frameworks, named MGM-MOFs. By embedding the newly developed molten crystalline organic electrolyte (ML20) into the nanocages of anionic MOF-OH, MGM-MOF-OH, characterized by multi-modal supramolecular interaction sites and continuous negative electrostatic environments within nano-channels, is achieved. These nanochannels promote ion transport through the successive hopping of Li+ between neighbored negative electrostatic environments and suppress anion movement through the chemical constraint of the hydroxyl-functionalized pore wall. This results in remarkable Li+ conductivity of 7.1 × 10-4 S cm-1 and high Li+ transference number of 0.81. Leveraging these advantages, the SSBs assembled with MGM-MOF-OH exhibit impressive cycle stability and a high specific energy density of 410.5 Wh kganode + cathode + electrolyte -1 under constrained conditions and various working temperatures. Unlike flammable traditional MOFs, MGM-MOF-OH demonstrates high robustness under various harsh conditions, including ignition, high voltage, and extended to humidity.

5.
J Periodontal Res ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481308

RESUMO

OBJECTIVES: In order to evaluate the effect of methacrylated hyaluronic acid (HAMA) hydrogels containing the recombinant human amelogenin (rhAm) in vitro and in vivo. BACKGROUND: The ultimate goal in treating periodontal disease is to control inflammation and achieve regeneration of periodontal tissues. In recent years, methacrylated hyaluronic acid (HAMA) containing recombinant human amyloid protein (rhAm) has been widely used as a new type of biomaterial in tissue engineering and regenerative medicine. However, there is a lack of comprehensive research on the periodontal regeneration effects of this hydrogel. This experiment aims to explore the application of photoresponsive recombinant human amelogenin-loaded hyaluronic acid hydrogel for periodontal tissue regeneration and provide valuable insights into its potential use in this field. MATERIALS AND METHODS: The effects of rhAm-HAMA hydrogel on the proliferation of human periodontal ligament cells (hPDLCs) were assessed using the CCK-8 kit. The osteogenic differentiation of hPDLCs was evaluated through ALP staining and real-time PCR. Calvarial parietal defects were created in 4-week-old Sprague Dawley rats and implanted with deproteinized bovine bone matrix in different treatment groups. The animals were euthanized after 4 and 8 weeks of healing. The bone volume of the defect was observed by micro-CT and histological analysis. RESULTS: Stimulating hPDLCs with rhAm-HAMA hydrogel did not significantly affect their proliferation (p > .05). ALP staining and real-time PCR results demonstrated that the rhAm-HAMA group exhibited a significant upregulation of osteoclastic gene expression (p < .05). Micro-CT results revealed a significant increase in mineralized tissue volume fraction (MTV/TV%), trabecular bone number (Tb.N), and mineralized tissue density (MTD) of the bone defect area in the rhAm-HAMA group compared to the other groups (p < .05). The results of hematoxylin and eosin staining and Masson staining at 8 weeks post-surgery further supported the results of the micro-CT. CONCLUSIONS: The results of this study indicate that rhAm-HAMA hydrogel could effectively promote the osteogenic differentiation of hPDLCs and stabilize bone substitutes in the defects that enhance the bone regeneration in vivo.

6.
EMBO J ; 43(8): 1484-1498, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467833

RESUMO

Since SARS-CoV-2 Omicron variant emerged, it is constantly evolving into multiple sub-variants, including BF.7, BQ.1, BQ.1.1, XBB, XBB.1.5 and the recently emerged BA.2.86 and JN.1. Receptor binding and immune evasion are recognized as two major drivers for evolution of the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein. However, the underlying mechanism of interplay between two factors remains incompletely understood. Herein, we determined the structures of human ACE2 complexed with BF.7, BQ.1, BQ.1.1, XBB and XBB.1.5 RBDs. Based on the ACE2/RBD structures of these sub-variants and a comparison with the known complex structures, we found that R346T substitution in the RBD enhanced ACE2 binding upon an interaction with the residue R493, but not Q493, via a mechanism involving long-range conformation changes. Furthermore, we found that R493Q and F486V exert a balanced impact, through which immune evasion capability was somewhat compromised to achieve an optimal receptor binding. We propose a "two-steps-forward and one-step-backward" model to describe such a compromise between receptor binding affinity and immune evasion during RBD evolution of Omicron sub-variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2 , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos
7.
Int J Biol Macromol ; 262(Pt 2): 130074, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342259

RESUMO

Poor systemic administration capability, a natural tendency to target CAR-positive cells, nonspecific shedding to normal organs, and poor viral persistence in tumor tissues are major hindrances to the therapeutic benefit of adenovirus (Ad) gene vectors in the clinical setting. Antheraea pernyi silk fibroin (ASF) grafted with targeted peptides was used to coat ING4-IL-24 dual-gene coexpressing adenovirus for targeted gene therapy of lung carcinoma. The dual-gene vector with a diameter of 390 nm could target and infect H460 lung tumor cells, internalize into cells, express the ING4 and IL-24 genes at a high level, effectively inhibit the proliferation of lung tumor cells, and induce their apoptosis. The in vivo treatment of H460 human lung carcinoma xenograft tumors showed that the dual-gene coexpressing vector suppressed the proliferation of lung tumor cells by downregulating the expression of Ki67 and Bcl-2, promoted apoptosis by upregulating the expression of C Caspase-3 and Bax, and blocked tumor angiogenesis by downregulating the expression of VEGF and CD31, thus exerting a multichannel tumor inhibition effect. Surface modification of Ad with targeted cationic silk fibroin is an effective way to solve the natural tendencies and in vivo instability of adenovirus vectors, and such vectors have potential for clinical application.


Assuntos
Carcinoma , Fibroínas , Neoplasias Pulmonares , Mariposas , Animais , Humanos , Fibroínas/genética , Pulmão , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Seda
8.
Food Funct ; 15(6): 2895-2905, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38404190

RESUMO

Anxiety- and depression-like behaviors are commonly observed clinical features of depression and many other mental disorders. Recent evidence has revealed the crucial role of the microbiota-gut-brain axis in the bidirectional communication between the gastrointestinal tract and the central nervous system. Supplementation with psychobiotics may provide a novel approach for the adjunctive treatment of mental disorders by regulating the intestinal microecology. We isolated and identified a novel probiotic, Lactiplantibacillus plantarum D-9 (D-9), from traditional Chinese fermented foods in our previous work, which exhibited a high yield of gamma-aminobutyric acid (GABA). Herein, it was proved that the oral administration of D-9 could alleviate the depression- and anxiety-like behaviors of Chronic Unpredicted Mild Stress (CUMS) mice, and show non-toxicity or side-effects in the mice. Physiological and biochemical analyses demonstrated that D-9 regulated tryptophan metabolism, the HPA-axis and inflammation in CUMS mice. Moreover, D-9 modulated the structure and composition of the gut microbiota, leading to an increase in the relative abundance of Ligilactobacillus murinus and Lactobacillus johnsonii, and a decrease in the levels of Kineothrix alysoides and Helicobacter bilis compared to those in CUMS mice. Our work demonstrates that D-9 alleviated anxiety- and depression-like disorders in CUMS mice by modulating tryptophan metabolism and the gut microbiota. These findings provide an innovative strategy for the intervention and treatment of depressive disorders.


Assuntos
Microbioma Gastrointestinal , Fármacos Neuroprotetores , Humanos , Animais , Camundongos , Triptofano , Depressão/tratamento farmacológico , Ansiedade/tratamento farmacológico
9.
Front Bioeng Biotechnol ; 12: 1334695, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333082

RESUMO

Introduction: ß-glucosidase is one class of pivotal glycosylhydrolase enzyme that can cleavage glucosidic bonds and transfer glycosyl group between the oxygen nucleophiles. Lactobacillus is the most abundant bacteria in the human gut. Identification and characterization of new ß-glucosidases from Lactobacillus are meaningful for food or drug industry. Method: Herein, an acid-adapted ß-glucosidase (LpBgla) was cloned and characterized from Lactobacillus paracasei. And the insight acid-adapted mechanism of LpBgla was investigated using molecular dynamics simulations. Results and Discussion: The recombinant LpBgla exhibited maximal activity at temperature of 30°C and pH 5.5, and the enzymatic activity was inhibited by Cu2+, Mn2+, Zn2+, Fe2+, Fe3+ and EDTA. The LpBgla showed a more stable structure, wider substrate-binding pocket and channel aisle, more hydrogen bonds and stronger molecular interaction with the substrate at pH 5.5 than pH 7.5. Five residues including Asp45, Leu60, Arg120, Lys153 and Arg164 might play a critical role in the acid-adapted mechanism of LpBgla. Moreover, LpBgla showed a broad substrate specificity and potential application in the bioconversion of glycosides, especially towards the arbutin. Our study greatly benefits for the development novel ß-glucosidases from Lactobacillus, and for the biosynthesis of aglycones.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38401063

RESUMO

Objective: The effectiveness of manual acupuncture for treating bronchial asthma is still debatable and broad, and the effects of different acupuncture points, treatment durations, or illness trajectories have never been rigorously assessed. The objective of this revised systematic review and subgroup meta-analysis of randomized controlled trials (RCTs) is to ascertain the clinical efficacy of manual acupuncture on bronchial asthma and whether these effects varied depending on the acupuncture points, length of treatment, or course of the disease. Materials and methods: PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) criteria were followed for creating a systematic review and meta-analysis. From the beginning through March 25, 2022, six electronic databases were checked. For the treatment of asthma, all RCTs contrasting acupuncture therapy along with conventional treatment against conventional treatment alone were chosen. The information was examined using Review Manager version 5.3 and Comprehensive Meta-Analysis version 3. Clinical efficacy (including the effective rate and the recurrence rate) was the primary outcome, and pulmonary function (including FEV1%, PEF) and The secondary results were T-lymphocyte immunity (containing CD3+, CD4+, and CD8+). Based on the acupuncture points, length of therapy, and nature of the condition, subgroup analyses were carried out. Results: There were a total of 21 RCTs that enrolled 2510 individuals. According to the meta-findings, analysis's manual acupuncture in addition to conventional treatment significantly increased the effective rate when compared to conventional treatment alone [OR = 5.14 95% CI 3.58-7.38, P < .00001], lung functions [FEV1% (MD = 6.18, 95% CI 2.40-9.96, P = .001) and PEF (MD = 0.45 95% CI 0.18-0.73, P = .001)], immune functions [CD3+ T lymphocytes (MD = 7.55 95% CI 6.55-8.56, P < .00001), CD4+ T-lymphocytes (MD = 5.11 95% CI 4.09-6.13, P < .00001), T-lymphocyte CD8+ (MD = -0.37.11 95% CI -3.62--2.51, P < .00001)] and noteworthy reduction in the recurrence rate (OR = 0.19 95% CI 0.10-0.38, P < .00001). Results from the subgroup analysis were consistent. Conclusion: Manual acupuncture combined with Western Medicine is more effective than conventional treatment alone for bronchial asthma. Combination therapy can significantly improve clinical efficacy, lung function, and immune function while reducing the relapse rate. But to further support the results of this investigation, high-quality RCTs with long-term outcomes are still required, taking into account the inherent limitations of the included studies. Registration number: PROSPERO (no. CRD42022357805) (https://www.crd.york.ac.uk/prospero/).

11.
Eur J Clin Invest ; 54(3): e14129, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37988199

RESUMO

BACKGROUND: The occurrence of gout is closely related to metabolism, but there is still a lack of evidence on the causal role of metabolites in promoting or preventing gout. METHODS: We applied a two-sample Mendelian randomization (MR) analysis to assess the association between 486 serum metabolites and gout using genome-wide association study statistics. The inverse variance weighting method was used to generate the main results, while sensitivity analyses using MR-Egger, weighted median, Cochran's Q test, Egger intercept test, and leave-one-out analysis, were performed to assess the stability and reliability of the results. We also performed a metabolic pathway analysis to identify potential metabolic pathways. RESULTS: After screening, 486 metabolites were retained for MR analysis. After screening by IVW and sensitivity analysis, 14 metabolites were identified with causal effect on gout (P < 0.05), among which hexadecanedioate was the most significant candidate metabolite associated with a lower risk of gout (IVW OR = 0.50; 95% CI = 0.38-0.67; P = 1.65 × 10-6 ). Metabolic pathway analysis identified one pathway that may be associated with the disease. CONCLUSION: This MR study combining genomics with metabolomics provides a novel insight into the causal role of blood metabolites in the risk of gout, which implies that examination of certain blood metabolites would be a feasible strategy for screening populations with a higher risk of gout.


Assuntos
Estudo de Associação Genômica Ampla , Gota , Humanos , Reprodutibilidade dos Testes , Gota/genética , Causalidade , Ácidos Graxos
12.
Nano Lett ; 24(1): 156-164, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38147652

RESUMO

Graphene nanoribbons (GNRs), quasi one-dimensional (1D) narrow strips of graphene, have shown promise for high-performance nanoelectronics due to their exceptionally high carrier mobility and structurally tunable bandgaps. However, producing chirality-uniform GNRs on insulating substrates remains a big challenge. Here, we report the successful growth of bilayer GNRs with predominantly armchair chirality and ultranarrow widths (<5 nm) on insulating hexagonal boron nitride (h-BN) substrates using chemical vapor deposition (CVD). The growth of GNRs is catalyzed by transition metal nanoparticles, including Fe, Co, and Ni, through a unique tip-growth mechanism. Notably, GNRs catalyzed by Ni exhibit a high purity (97.3%) of armchair chirality. Electron transport measurements indicate that the ultrathin bilayer armchair GNRs exhibit quasi-metallic behavior. This quasi-metallicity is further supported by density functional theory (DFT) calculations, which reveal a significantly reduced bandgap in bilayer armchair GNRs. The chirality-specific GNRs reported here offer promising advancements for the application of graphene in nanoelectronics.

13.
Heliyon ; 9(12): e22650, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058447

RESUMO

Background: and Purpose: Fuzitang decoction (FZT), a classic prescription of traditional Chinese medicine (TCM), has excellent efficacy in treating gouty arthritis (GA). However, the underlying molecular mechanism remains obscure. In the present study, we aimed to explore the underlying mechanisms of FZT in treating GA by virtual screening combined with experimental verification. Methods: In this study, the active components of FZT and their corresponding targets were screened from the TCMSP database and TargetNet database. Then, the potential targets of FZT against GA were retrieved from multiple databases to generate a network. Protein-protein interaction, herbal-component-target, Gene Ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were applied to identify potential targets and related signaling pathways. Furthermore, molecular docking simulation was applied to identify the interactions between the drug and targets. Finally, in vitro experiments were conducted to validate the potential targets and signaling pathways. Results: In the present study, several crucial components, including kaempferol, luteolin, catechin, deoxyandrographolide, and perlolyrine in FZT, were obtained through network pharmacology, and several potential targets to treat GA were developed, such as PPARG, CYP3A4, PTGS2 (known as COX2), VEGFA, and CYP1A1. Experimental validation suggested that deoxyandrographolide significantly suppressed the expression of IL-1ß, COX2, NLRP3 and IL-6 in inflammatory monocyte cells. Conclusions: Our results identified a novel anti-inflammatory compound, deoxyandrographolide, which helps to explain the potential mechanism of FZT in treating GA and provides evidence to support FZT's clinical use.

14.
Heliyon ; 9(8): e19108, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37664739

RESUMO

Grain-sized moxibustion (GS-Moxi) and suspended moxibustion (S-Moxi) represent the two typical local heat therapies in Traditional Chinese Medicine (TCM) and have been extensively used in treating gastric ulcers (GU) in China. However, the difference in biological response between the two moxibustion therapies in treating GU remains unclear. Here we investigated the therapeutic effect and potential mechanistic difference underlying the two moxibustion methods. Ethanol-induced GU model was established and was treated with GS-Moxi or S-Moxi at ST36 and ST21 for 5 days separately. And then, gastric histopathological examination, immunohistochemical staining for repair factors (EGFR, VEGF, Ki67), and 1H NMR-based metabolomics analysis of plasma and stomach of rats were conducted. We found GS-Moxi and S-Moxi effectively alleviated gastric damage and significantly increased the expression of related repair factors. However, S-Moxi corrected aberrant energy metabolism and lipids metabolism in GU rats but had little effect on neurotransmitter-related metabolism, while GS-Moxi regulated energy metabolism and neurotransmitter-related metabolism in GU rats but had no effect on lipids metabolism. We further proposed that the main target of S-Moxi may be liver and vasculature, whereas GS-Moxi specially targeted the stomach via regulating nervous system. This study strongly verified the outstanding gastroprotective effects of moxibustion and enriched our understanding of the varied biological responses triggered by different moxibustion methods.

15.
Brief Bioinform ; 24(5)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37605947

RESUMO

Predicting the biological properties of molecules is crucial in computer-aided drug development, yet it's often impeded by data scarcity and imbalance in many practical applications. Existing approaches are based on self-supervised learning or 3D data and using an increasing number of parameters to improve performance. These approaches may not take full advantage of established chemical knowledge and could inadvertently introduce noise into the respective model. In this study, we introduce a more elegant transformer-based framework with focused attention for molecular representation (TransFoxMol) to improve the understanding of artificial intelligence (AI) of molecular structure property relationships. TransFoxMol incorporates a multi-scale 2D molecular environment into a graph neural network + Transformer module and uses prior chemical maps to obtain a more focused attention landscape compared to that obtained using existing approaches. Experimental results show that TransFoxMol achieves state-of-the-art performance on MoleculeNet benchmarks and surpasses the performance of baselines that use self-supervised learning or geometry-enhanced strategies on small-scale datasets. Subsequent analyses indicate that TransFoxMol's predictions are highly interpretable and the clever use of chemical knowledge enables AI to perceive molecules in a simple but rational way, enhancing performance.


Assuntos
Inteligência Artificial , Benchmarking , Redes Neurais de Computação
16.
Br J Cancer ; 129(8): 1261-1273, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37644092

RESUMO

BACKGROUND: Recent studies suggested that NDUFS1 has an important role in human cancers; however, the effects of NDUFS1 on gastric cancer (GC) are still not fully understood. METHODS: We confirmed that NDUFS1 is downregulated in GC cells through western blot immunohistochemistry and bioinformation analysis. The effect of NDUFS1 on GC was studied by CCK-8, colony formation, transwell assay in vitro and Mouse xenograft assay in vivo. Expression and subcellular localization of NDUFS1 and the content of mitochondrial reactive oxygen species (mROS) was observed by confocal reflectance microscopy. RESULTS: Reduced expression of NDUFS1 was found in GC tissues and cell lines. Also, NDUFS1 overexpression inhibited GC cell proliferation, migration, and invasion in vitro as well as growth and metastasis in vivo. Mechanistically, NDUFS1 reduction led to the activation of the mROS-hypoxia-inducible factor 1α (HIF1α) signaling pathway. We further clarified that NDUFS1 reduction upregulated the expression of fibulin 5 (FBLN5), a transcriptional target of HIF1α, through activation of mROS-HIF1α signaling in GC cells. CONCLUSIONS: The results of this study indicate that NDUFS1 downregulation promotes GC progression by activating an mROS-HIF1α-FBLN5 signaling pathway.

17.
Emerg Microbes Infect ; 12(2): 2231573, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37394992

RESUMO

Highly contagious respiratory illnesses like influenza and COVID-19 pose serious risks to public health. A two-in-one vaccine would be ideal to avoid multiple vaccinations for these diseases. Here, we generated a chimeric receptor binding domain of the spike protein (S-RBD) and hemagglutinin (HA)-stalk-based vaccine for both SARS-CoV-2 and influenza viruses. The S-RBD from SARS-CoV-2 Delta was fused to the headless HA from H1N1 (H1Delta), creating a chimera that forms trimers in solution. The cryo-electron microscopy structure of the chimeric protein complexed with the RBD-targeting CB6 and the HA-stalk-targeting CR9114 antibodies shows that the trimeric protein is stable and accessible for neutralizing antibody binding. Immunization with the vaccine elicited high and long-lasting neutralizing antibodies and effectively protected mice against the challenges of lethal H1N1 or heterosubtypic H5N8, as well as the SARS-CoV-2 Delta or Omicron BA.2 variants. Overall, this study offers a two-in-one universal vaccine design to combat infections caused by both SARS-CoV-2 variants of concern and influenza viruses.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Camundongos , Animais , Humanos , Hemaglutininas , Vacinas contra COVID-19 , Vírus da Influenza A Subtipo H1N1/genética , Microscopia Crioeletrônica , Anticorpos Antivirais , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas contra Influenza/genética , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética
18.
Front Immunol ; 14: 1217590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492563

RESUMO

Background: Lung adenocarcinoma (LUAD) is a major subtype of non-small cell lung cancer (NSCLC) with a highly heterogeneous tumor microenvironment. Immune checkpoint inhibitors (ICIs) are more effective in tumors with a pre-activated immune status. However, the potential of the immune activation-associated gene (IAG) signature for prognosis prediction and immunotherapy response assessment in LUAD has not been established. Therefore, it is critical to explore such gene signatures. Methods: RNA sequencing profiles and corresponding clinical parameters of LUAD were extracted from the TCGA and GEO databases. Unsupervised consistency clustering analysis based on immune activation-related genes was performed on the enrolled samples. Subsequently, prognostic models based on genes associated with prognosis were built using the last absolute shrinkage and selection operator (LASSO) method and univariate Cox regression. The expression levels of four immune activation related gene index (IARGI) related genes were validated in 12 pairs of LUAD tumor and normal tissue samples using qPCR. Using the ESTIMATE, TIMER, and ssGSEA algorithms, immune cell infiltration analysis was carried out for different groups, and the tumor immune dysfunction and rejection (TIDE) score was used to evaluate the effectiveness of immunotherapy. Results: Based on the expression patterns of IAGs, the TCGA LUAD cohort was classified into two clusters, with those in the IAG-high pattern demonstrating significantly better survival outcomes and immune cell infiltration compared to those in the IAG-low pattern. Then, we developed an IARGI model that effectively stratified patients into different risk groups, revealing differences in prognosis, mutation profiles, and immune cell infiltration within the tumor microenvironment between the high and low-risk groups. Notably, significant disparities in TIDE score between the two groups suggest that the low-risk group may exhibit better responses to ICIs therapy. The IARGI risk model was validated across multiple datasets and demonstrated exceptional performance in predicting overall survival in LUAD, and an IARGI-integrated nomogram was established as a quantitative tool for clinical practice. Conclusion: The IARGI can serve as valuable biomarkers for evaluating the tumor microenvironment and predicting the prognosis of LUAD patients. Furthermore, these genes probably provide valuable guidance for establishing effective immunotherapy regimens for LUAD patients.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/terapia , Prognóstico , Imunoterapia , Microambiente Tumoral/genética
19.
Nat Commun ; 14(1): 4405, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479708

RESUMO

Multiple SARS-CoV-2 Omicron sub-variants, such as BA.2, BA.2.12.1, BA.4, and BA.5, emerge one after another. BA.5 has become the dominant strain worldwide. Additionally, BA.2.75 is significantly increasing in some countries. Exploring their receptor binding and interspecies transmission risk is urgently needed. Herein, we examine the binding capacities of human and other 28 animal ACE2 orthologs covering nine orders towards S proteins of these sub-variants. The binding affinities between hACE2 and these sub-variants remain in the range as that of previous variants of concerns (VOCs) or interests (VOIs). Notably, R493Q reverse mutation enhances the bindings towards ACE2s from humans and many animals closely related to human life, suggesting an increased risk of cross-species transmission. Structures of S/hACE2 or RBD/hACE2 complexes for these sub-variants and BA.2 S binding to ACE2 of mouse, rat or golden hamster are determined to reveal the molecular basis for receptor binding and broader interspecies recognition.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Cricetinae , Humanos , Animais , Camundongos , Ratos , SARS-CoV-2/genética , Mesocricetus , Mutação
20.
Mol Psychiatry ; 28(10): 4374-4389, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37280283

RESUMO

Activation of innate immunity in the brain is a prominent feature of Alzheimer's disease (AD). The present study investigated the regulation of innate immunity by wild-type serum injection in a transgenic AD mouse model. We found that treatment with wild-type mouse serum significantly reduced the number of neutrophils and microglial reactivity in the brains of APP/PS1 mice. Mimicking this effect, neutrophil depletion via Ly6G neutralizing antibodies resulted in improvements in AD brain functions. Serum proteomic analysis identified vascular endothelial growth factor-A (VEGF-A) and chemokine (C-X-C motif) ligand 1 (CXCL1) as factors enriched in serum samples, which are crucial for neutrophil migration and chemotaxis, leukocyte migration, and cell chemotaxis. Exogenous VEGF-A reversed amyloid ß (Aß)-induced decreases in cyclin-dependent kinase 5 (Cdk5) and increases in CXCL1 in vitro and blocked neutrophil infiltration into the AD brain. Endothelial Cdk5 overexpression conferred an inhibitory effect on CXCL1 and neutrophil infiltration, thereby restoring memory abilities in APP/PS1 mice. Our findings uncover a previously unknown link between blood-derived VEGF signaling and neutrophil infiltration and support targeting endothelial Cdk5 signaling as a potential therapeutic strategy for AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Camundongos , Animais , Camundongos Transgênicos , Fator A de Crescimento do Endotélio Vascular , Infiltração de Neutrófilos , Proteômica , Doença de Alzheimer/terapia , Transtornos da Memória , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/genética , Presenilina-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...